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What is that?
How do you do it?
How well does it work?
How can it be improved?

Outline



WRF Variational Data Assimilation
Out-of-the-box WRF 3DVAR
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WRF Hybrid Ensemble Variational 
Data Assimilation

(Flow-dependent + 3DVAR errors)
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The Hybrid Cost Function 
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But how do you cycle this?
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WRF analysis

Background 1

Observations
Observation

errors

Background 2
Background n

mean
&

spread

?



Ensemble generation technique
 Ensemble transform Kalman filter (ETKF)

 Xf = Matrix w/columns of ensemble perturbations
 The scalar factor       attempts to reduce the 

systematic underestimation of   
 Transforms forecast perturbations into analysis 

perturbations
 Add these perturbations to ensemble mean
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Methodology Model configuration 
 WRF V3.2
 45-km resolution
 Single domain
 160 × 160 grid points
 35 vertical levels
 20-mem ensemble
 1 - 31 March 2010 
 Assimilate all “standard”

obs. + atmospheric motion vectors



RESULTS: The ETKF ensemble (100% B)
 Ensemble spread  inflation



ETKF transformation of ensemble forecast 
perturbations

Month average total energy profiles for phys (left) and 
no_phys (right).  Dashed = a priori, solid = a posteriori



First Guess (Ensemble Mean ) RMSE



ETKF ensemble:
 Requires large inflation factor to maintain 

ensemble spread
 Provides stable month-long ensemble
 Ensemble 3DVAR more skillful than standard 

3DVAR! (6 or more % RMSE reduction!)
 Multi-physics ensemble mean most skillful
 Single-physics cycling DA and deterministic 

forecasts most skillful



RESULTS: Hybrid 3DVAR-ETKF data assimilation

 12- and 48-h deterministic forecasts from 
each analysis during the 1-month long cycling 
expts.

 T-test used to confirm differences are 
statistically significant (indicated by +)

 RMSE reduction is relative to ensemble
3DVAR (i,e., 100% B)

 Only showing 1/β2 = 0.2 (20% Pf, 80% B)



Multi-physics

A and C

Single-physics

B and D

Covariance 
localization 

length scales 
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12-h (black)



Summary
 ETKF provides a method to maintain an ensemble 

for the hybrid system
 Use of the ensemble mean as the first guess in the 

3DVAR cost function significantly improves 
analysis skill 

 Incorporating ensemble-based error covariances into 
the hybrid cost function added skill to the analysis
 This was in addition to the skill added by using the 

ensemble mean as the first guess
 Multi-physics ensemble covariances proved to be most 

beneficial



Future Work
 Hybrid system is fairly robust but needs a skillful 

ensemble
 ETKF ensemble is not optimal

 It doesn’t localize (requires large inflation factor)
 It’s not consistent with the hybrid cost function (simply 

estimates what EnKF would provide)
 WRFDA system can produce its own ensemble!

 Lanczos minimization algorithm provides estimate of 
inverse Hessian of hybrid variational cost function (this is 
the analysis error covariance) (Collaboration with Tom 
Auligne: NCAR)



Thanks!



Additional slides



Outline
 Introduction
 Purpose of study
 Description of the WRF hybrid scheme 
 Methodology 
 RESULTS: Optimization of the ETKF ensemble
 RESULTS: Hybrid 3DVAR-ETKF data 

assimilation
 RESULTS: HLEF as an alternative to ETKF 
 Concluding remarks 



Introduction  3DVAR
 Minimize cost function (maximize likelihood)

 Incremental formulation WRF 3DVAR
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1
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Introduction  EnKF
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Ensemble generation techniques
 Inflation factor
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The squared innovations should equal the trace of the sample 
background forecast-error covariance estimate – That is, the 

ensemble spread should approximate the ensemble mean error
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Ensemble generation techniques
 ETKF rescaling of ensemble perturbations



Theory  HLEF
 MLEF

State space analysis covariance matrix is
Pa

1/2 = Pf
1/2 [I + (X)TX]-1/2

 HLEF
Replace [I + (X)TX] (generalized Hessian at the 
optimal point) with an equivalent estimate of the 
Hessian at the optimal point



Ensemble generation techniques
 Lanczos minimization algorithm
 A conjugate gradient minimization algorithm
 Gives us an equivalent estimate of the inverse 

Hessian of the variational cost function
 Find solution to Ax=b
 Define Φ(x) = ½xTAx – xTb
 Minimize Φ over a set of Lanczos vectors
 ||Ax - b ||2 = residual (of optimal solution)!



Methodology  Observations 
 Assimilate “standard NCEP observations”
 And satellite atmospheric motion vectors (AMVs)



Methodology  ETKF experiments
 Vertical covariance localization (secondary 

consideration)
 Propose that vertical covariance localization 

should be consistent with horizontal covariance 
localization

 Rossby radius of deformation relation



Methodology  Evaluation method
 Diagnose ETKF ensemble maintenance
 Ensemble spread
 Ensemble perturbation space directions
 Dependence on covariance inflation

 Performance of analyses
 48-h deterministic forecasts verified at 12 and 48 

hours for 30-days (60 analyses) 



Tuned 3DVAR background error covariances

NMC method single-physics ensemble method



Tuned 3DVAR background error covariances

Single-physics ensemble method



Tuned 3DVAR background error covariances
Eigenvalues corresponding to eigenvectors



RESULTS: Optimization of the ETKF ensemble
 Ensemble spread  Rank histograms

U and V winds for phys and no_phys (top = original, bottom = added 
observations noise to ensemble members). Cycles 2,4,6,8



RESULTS: Optimization of the ETKF ensemble

 ETKF transformation of ensemble forecast 
perturbations

 Define Total dry energy spread
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RESULTS: Optimization of the ETKF ensemble

 Maintenance of variance in orthogonal 
directions

Eigenvalues of ensemble 
forecast spread in obs. space

Phys
No_phys
1-month average



RESULTS: Optimization of the ETKF ensemble 
 Ensemble precision (range of resolved 

innovation variance)



RESULTS: Hybrid 3DVAR-ETKF data assimilation 

 Hybrid analysis increments 
 Pseudo observation tests for “tuned” B
 Then, Pseudo observation tests for Pf +B

 Innovation = 5 m/s
 Obs error = 1 m/s
 Center of domain at ~ 800 hPa level
 Valid 10 March 2010

 Mature ensemble perturbations



Forecast
Valid 

10 Mar ‘10



3DVAR B Analysis Increments



no_phys-tuned phys-tuned



NMC method



Hybrid Analysis Increments

Pure ensemble 
1/β2 = 1.0

100% Pf, 0% B

Covariance localization 
1500, 1000, 500, and 250 km







Hybrid Analysis Increments

Hybrid  
1/β2 = 0.5

50% Pf, 50% B

Covariance localization 
1500, 1000, 500, and 250 km





1/β2 = 1.0



1/β2 = 0.8



1/β2 = 0.5



1/β2 = 0.2



RESULTS: Hybrid 3DVAR-ETKF data assimilation
 Altitude-dependent vert. cov. localization

26 gp 2 gp



RESULTS: Hybrid 3DVAR-ETKF data assimilation



RESULTS: HLEF as an alternative to ETKF

 Theoretical equivalence

 Localization in HLEF perturbations 

 Hybridizations in HLEF perturbations 



Theoretical equivalence 



Localization in HLEF perturbations



Localization in HLEF perturbations



Hybridizations in HLEF perturbations 



Summary and discussion
 The ETKF provides a sufficient (albeit slightly under-

dispersive) ensemble
 Including multi-physics diversity:

 reduces the ensemble’s dependence on covariance inflation
 resolves more innovation variance than the single-physics ensemble
 Maintains variance more evenly in the available sub-space directions

 The multi-physics ensemble was characterized by larger error 
growth (at lower altitudes) than the single-physics ensemble

 Use of the ensemble mean as the first guess in the 3DVAR 
cost function significantly improved analysis skill 



Summary and discussion
 Tuning B with the ETKF ensemble improved the skill of 

deterministic and ensemble 3DVAR
 Incorporating ensemble-based error covariances into the 

hybrid cost function added skill to the analysis
 This was in addition to the skill added by using the ensemble mean as 

the first guess
 Multi-physics ensemble covariances proved to be most beneficial

 Vertical covariance localization adds some skill to the 
analysis although more work is needed to determine an 
optimal localization criterion
 The Rossby radius of deformation provides a baseline for future work



Summary and discussion
 HLEF was shown to be equivalent to ETKF
 HLEF improved upon ETKF through the effect of 

covariance localization
 The possibility of producing hybridized HLEF 

analysis perturbations and the hybrid analysis in a 
single step was shown



Thank you



Methodology
 Balance in the analysis 
 Ensemble mean is used as first guess 

(background)
 Ensemble mean is not physically balanced
 Analysis increments can cause imbalance
 Covariance localization introduces imbalance

 Digital filter initialization used to balance 
each initial ensemble forecast



RESULTS: Ensemble mean as the first guess
 Ensemble 3DVAR  Non-hybrid!!!
 12- and 48-h deterministic forecasts from each 

analysis during the 1-month long cycling expts.
 T-test used to confirm differences are statistically 

significant (indicated by +)
 Rmse profiles of “rmse reduction” are shown (<0 

indicates reduced skill and >0 indicated imporved 
skill)

 Reduction is based on 3DVAR with NMC-method 
rmse



48-h rmse

12-h rmse



RESULTS: Hybrid 3DVAR-ETKF data assimilation



Theoretical equivalence 



Lanczos Algorithm
1) Supply first guess, xg

2) Minimize cost function to find xa

a) generate sequence of orthogonal Lanczos vectors 
b) Lanczos iterations
c) Determine eigenvalues and eigenvectors of the Lanczos tri-diagonal 
matrix
d) check convergence criterion 
e) orthonormalize new gradient and continue Lanczos iteration if 
necessary.

3) Construct inverse Hessian by randomizing Lanczos tri-diagonal matrix
4) Add inverse Hessian elements (analysis perturbations) to analysis  
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